Mechatronic Modeling and Design with Applications in Robotics

Analytical Modeling (Part 2)

- A system is assumed to be at rest (zero initial conditions),
- A transfer function is defined by

Note: input, system and output into three separate and distinct parts.
A general n th-order, linear, time-invariant differential equation:

$$
a_{n} \frac{d^{n} c(t)}{d t^{n}}+a_{n-1} \frac{d^{n-1} c(t)}{d t^{n-1}}+\cdots+a_{0} c(t)=b_{m} \frac{d^{m} r(t)}{d t^{m}}+b_{m-1} \frac{d^{m-1} r(t)}{d t^{m-1}}+\cdots+b_{0} r(t)
$$

where $c(t)$ is the output, $r(t)$ is the input.
Assume: zero initial conditions, and take the Laplace transform on both side:

$$
\left(a_{n} s^{n}+a_{n-1} s^{n-1}+\cdots+a_{0}\right) C(s)=\left(b_{m} s^{m}+a_{m-1} s^{m-1}+\cdots+a_{0}\right) R(s)
$$

$$
\begin{equation*}
\frac{C(s)}{R(s)}=\frac{\left(b_{m} s^{m}+a_{m-1} s^{m-1}+\cdots+a_{0}\right)}{\left(a_{n} s^{n}+a_{n-1} s^{n-1}+\cdots+a_{0}\right)} \quad \Rightarrow \quad G(s)=\frac{C(s)}{R(s)} \tag{s}
\end{equation*}
$$

Example

Find the transfer function represented by $\frac{d c(t)}{d t}+2 c(t)=r(t)$, and use the result to find the response $c(t)$ to a unit step input with zero initial conditions.

Laplace Transform

One of the most important math tool in the course!

Definition:

For a function $f(t)(f(t)=0$ for $t=0)$

$$
F(s)=\mathcal{L}\{f(t)\}=\int_{0}^{\infty} f(t) e^{-s t} d t
$$

(s: complex variable)
$F(s)$ is denoted as the Laplace transform of $f(t)$

Inverse Laplace Transform

Allow us to find $f(t)$ given $F(s)$:

$$
\mathcal{L}^{-1}[F(s)]=\frac{1}{2 \pi j} \int_{\sigma-j \infty}^{\sigma+j \infty} F(s) e^{s t} d s=f(t) u(t)
$$

where

$$
u(t)= \begin{cases}1, & t>0 \\ 0, & t<0\end{cases}
$$

An Advantage of Laplace Transform

Transform an ordinary differential equation (ODE) into an algebraic equation (AE).

Laplace Transform Table

No.	$\boldsymbol{f}(\boldsymbol{t})$	
1	$\delta(t)$	$\boldsymbol{F}(\boldsymbol{s})$
2	$u(t)$	
3	$t u(t)$	\mathcal{L}
4	$t^{n} u(t)$	$\frac{1}{s}$
5	$e^{-a t} u(t)$	$\frac{1}{s^{2}}$
6	$\sin \omega t u(t)$	$\frac{n!}{s^{n+1}}$
7	$\cos \omega t u(t)$	$\frac{1}{s+a}$
		$\frac{\omega}{s^{2}+\omega^{2}}$
		$\frac{s}{s^{2}+\omega^{2}}$

Laplace Transform Theorems (Properties)

Item no.	Theorem	Name
1.	$\mathscr{L}[f(t)]=F(s)=\int_{0-}^{\infty} f(t) e^{-s t} d t$	Definition
2.	$\mathscr{L}[k f(t)]=k F(s)$	Linearity theorem
3.	$\mathscr{L}\left[f_{1}(t)+f_{2}(t)\right]=F_{1}(s)+F_{2}(s)$	Linearity theorem
4.	$\mathscr{L}\left[e^{-a t} f(t)\right]=F(s+a)$	Frequency shift theorem
5.	$\mathscr{L}[f(t-T)]=e^{-s T} F(s)$	Time shift theorem
6.	$\mathscr{L}[f(a t)]=\frac{1}{a} F\left(\frac{s}{a}\right)$	Scaling theorem
7.	$\mathscr{L}\left[\frac{d f}{d t}\right]=s F(s)-f(0-)$	Differentiation theorem
8.	$\mathscr{L}\left[\frac{d^{2} f}{d t^{2}}\right]=s^{2} F(s)-s f(0-)-f(0-)$	Differentiation theorem
9.	$\mathscr{L}\left[\frac{d^{n} f}{d t^{n}}\right]=s^{n} F(s)-\sum_{k=1}^{n} s^{n-k} f^{k-1}(0-)$	Differentiation theorem
10.	$\mathscr{L}\left[\int_{0-}^{t} f(\tau) d \tau\right]=\frac{F(s)}{s}$	Integration theorem
11.	$f(\infty)=\lim _{s \rightarrow 0} s F(s)$	Final value theorem ${ }^{1}$
12.	$f(0+)=\lim _{s \rightarrow \infty} s F(s)$	Initial value theorem ${ }^{\mathbf{2}}$

Partial-Fraction Expansion: To convert the function to a sum of simpler terms.
E.g.,

$$
F(s)=\frac{s^{3}+2 s^{2}+6 s+7}{s^{2}+s+5}
$$

Partial-Fraction Expansion

$$
\xrightarrow{\mathcal{L}^{-1}} f(t)=\mathcal{L}^{-1}\{s\}+\mathcal{L}^{-1}\{1\}+\mathcal{L}^{-1}\left\{\frac{2}{s^{2}+s+5}\right\}
$$

Reminder:
Order of the numerator
less than its denominator

1. Real and Distinct

$$
F(s)=\frac{2}{(s+1)(s+2)} \quad \rightarrow \quad F(s)=\frac{K_{1}}{(s+1)}+\frac{K_{2}}{(s+2)}
$$

2. Real and Repeated

$$
F(s)=\frac{2}{(s+1)(s+2)^{2}} \rightarrow \quad F(s)=\frac{K_{1}}{(s+1)}+\frac{K_{2}}{(s+2)^{2}}+\frac{K_{3}}{(s+2)}
$$

3. Complex or Imaginary
$F(s)=\frac{3}{s\left(s^{2}+2 s+5\right)} \rightarrow \quad F(s)=\frac{K_{1}}{s}+\frac{K_{2} s+K_{3}}{s^{2}+2 s+5}$

Differentiation Theorem: $\mathcal{L}\left\{\frac{d f}{d t}\right\}=s F(s)-f(0) ; \mathcal{L}\left\{\frac{d^{2} f}{d t^{2}}\right\}=s^{2} F(s)-s f(0)-f^{\prime}(0)$; $\mathcal{L}\left\{\frac{d^{n} f}{d t^{n}}\right\}=s^{n} F(s)-\sum_{k-1}^{n} s^{n-k} f^{k-1}(0) ;$

Example: Given the following differential equation, solve for $y(t)$ if all initial conditions are zeros.

$$
\frac{d^{2} f}{d t^{2}}+2 \frac{d y(t)}{d t}+4 y(t)=4 u(t)
$$

$\frac{/ / / / / / / / /}{}$

Example 2

Given the network below, find the transfer function $\frac{I_{2}(s)}{\mathrm{V}(\mathrm{c})}$.

Assume the TF of a SISO system is as follows:

$G(s)=\frac{b_{m} s^{m}+b_{m-1} s^{m-1}+\cdots+b_{1} s+b_{0}}{s^{n}+a_{n-1} s^{n-1}+\cdots+a_{1} s+a_{0}}$ where $m<n$
Then its state-space model can be written below:
$\left\{\begin{array}{l}\dot{x}=A x+B u \\ y=C x+D u\end{array}\right.$ where $A=\left[\begin{array}{ccccc}0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & 0 \\ 0 & 0 & 0 & \cdots & 1 \\ -a_{0} & -a_{1} & -a_{2} & \cdots & -a_{n-1}\end{array}\right]_{n \times n}$,
$B=\left[\begin{array}{c}0 \\ 0 \\ \vdots \\ 1\end{array}\right]_{n \times 1}, C=\left[\begin{array}{lllll}b_{0} & b_{1} & \cdots & b_{m} & 0\end{array}\right]_{1 \times n}, D=[0]$

$$
G(s)=\frac{2 s^{2}+5 s+3}{3 s^{3}+7 s^{2}-6 s+1}
$$

Please find its state-space model.
$G(s)=\frac{\frac{2}{3} s^{2}+\frac{5}{3} s+1}{s^{3}+\frac{7}{3} s^{2}-2 s+\frac{1}{3}}$ (third-order system)
Its state-space model: $\left\{\begin{array}{l}\dot{x}=A x+B u \\ y=C x+D u\end{array}\right.$
$A=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ -\frac{1}{3} & 2 & -\frac{7}{3}\end{array}\right], B=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right], C=\left[\begin{array}{lll}1 & \frac{5}{3} & \frac{2}{3}\end{array}\right], D=[0]$

Assume the state-space model of a system is as follows:

$$
\left\{\begin{array}{l}
\dot{x}=A x+B u \\
y=C x+D u
\end{array}\right.
$$

Take the Laplace Transform assuming zero initial conditions

$$
\left\{\begin{array}{c}
s X(s)=A X(s)+B U(s) \\
Y(s)=C X(s)+D U(s)
\end{array}\right.
$$

Solving for $\mathrm{X}(\mathrm{s})$ in above equations
$X(s)=(s I-A)^{-1} B U(s)$ where I is the identity matrix Substitute it to $y=C x+D u \rightarrow$

$$
\begin{gathered}
Y(s)=\left[C(s I-A)^{-1} B+D\right] U(s) \\
G(s)=\frac{Y(s)}{U(s)}=C(s I-A)^{-1} B+D
\end{gathered}
$$

Example

$$
\begin{gathered}
\dot{x}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-1 & -2 & -3
\end{array}\right] x+\left[\begin{array}{c}
10 \\
0 \\
0
\end{array}\right] u \\
y=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right] x+0 \cdot u
\end{gathered}
$$

Please find its transfer function.

$$
\begin{aligned}
& \quad G(s)=C(s I-A)^{-1} B+D \\
& =\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]\left(s\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]-\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-1 & -2 & -3
\end{array}\right]\right)^{-1}\left[\begin{array}{c}
10 \\
0 \\
0
\end{array}\right]+[0] \\
& =\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
s & -1 & 0 \\
0 & 2 & -1 \\
1 & 2 & s+3
\end{array}\right]^{-1}\left[\begin{array}{c}
10 \\
0 \\
0
\end{array}\right]+[0] \\
& =
\end{aligned}
$$

The End!!

